Analysis Of Retail Sector Market Reaction In Indonesia On Social Media And Investor Sentiment


  • Khaerunnisa Nur Fatimah Syahnur Institut Teknologi dan Bisnis Kalla
  • Dewi Fatmarani Surianto Universitas Negeri Makassar
  • Muhammad Try Dharsana Universitas Hasanuddin



Social Media, Investor Sentiments, Market Reaction, Retail Sector


This study aims to examine the effect of social media and investor sentiment on the market reaction of the retail sector in Indonesia. Content analysis determines investor sentiment obtained from social media. Information related to the 2019 Indonesian presidential election was used for content analysis. The study results provide evidence that the information available on social media and online investor sentiment have a positive effect on the market reaction of the retail sector in Indonesia. This study also supports the use of signal theory to explain the effect of information available on social media on the capital market in Indonesia.


Download data is not yet available.


Al-thaqeb, S. A. (2018). Research in International Business and Finance Do international markets overreact ? Event study : International market reaction to U . S . local news events. Research in International Business and Finance, 44(December 2016), 369–385.

Ali, H. (2018). Twitter , Investor Sentiment and Capital Markets : What Do We Know ? International Journal of Economics and Finance, 10(8), 158–171.

Althnian, A., Alsaeed, D., Al-baity, H., Samha, A., Dris, A. Bin, Alzakari, N., … Kurdi, H. (2021). Impact of Dataset Size on Classification Performance : An Empirical Evaluation in the Medical Domain. Applied Sciences, 11(2), 1–18.

Baker, M., & Wurgler, J. (2006). Investor Sentiment and the Cross-Section of Stock Returns. The Journal of Finance, LXI(4), 1645–1679.

Bartov, E., Faurel, L., & Mohanram, P. S. (2018). Can Twitter Help Predict Firm-Level Earnings and Stock Returns? The Accounting Review, 93(3), 25–57.

Blajer-gołębiewska, A., Wach, D., & Kos, M. (2018). Financial risk information avoidance. Economic Research-Ekonomska Istraživanja, 31(1), 1–16.

Boatwright, B., Mazer, J. P., & Beach, S. (2019). The 2016 U . S . Presidential Election and Transition Events : A Social Media Volume and Sentiment Analysis. 3203.

Boulland, R., & Dessaint, O. (2017). Announcing the announcement. Journal of Banking and Finance, 82, 59–79.

Brown, E. D. (2012). Bulls , Bears … and Birds ? Studying the Correlation between Twitter Sentiment and the S & P500 Completed Research Paper. International Conference on Information System, (February).

Chahine, S., & Malhotra, N. K. (2018). Impact of social media strategies on stock price : the case of Twitter. European Journal of Marketing, 52(7), 1526–1549.

Chau, F., Deesomsak, R., & Koutmos, D. (2016). International Review of Financial Analysis Does investor sentiment really matter ? International Review of Financial Analysis, 48, 221–232.

Chen, R., Yu, J., Jin, C., & Bao, W. (2019). Internet finance investor sentiment and return comovement. Pacific-Basin Finance Journal, 56(February), 151–161.

Cheung, C. M. K., Sophia, B., & Liu, I. L. B. (2014). Do actions speak louder than voices ? The signaling role of social information cues in influencing consumer purchase decisions. Decision Support Systems, 65, 50–58.

Chiou, W. P., Knewtson, H. S., & Nofsinger, J. R. (2019). Paying attention to social media stocks. International Review of Economics and Finance, 59(April 2018), 106–119.

Chiu, J., Chung, H., Ho, K., & Wu, C. (2018). Investor sentiment and evaporating liquidity during the financial crisis. International Review of Economics and Finance, 55(November 2017), 21–36.

Colón-de-armas, C., & Rodriguez, J. (2017). Investor sentiment and US presidential elections sentiment. Review of Behavioral Finance, 9(3), 227–241.

Connelly, B. L., Ireland, R. D., & Reutzel, C. R. (2011). Signaling Theory : A Review and Assessment. Journal of Management, 37(1), 39–67.

Daniel, K., & Titman, S. (2006). Market Reactions to Tangible and Intangible Information. The Journal of Finance, LXI(4), 1605–1643.

Deephouse, D. L. (2000). Media Reputation as a Strategic Resource : An Integration of Mass Communication and Resource-Based Theories. Journal of Management, 26(6), 1091–1112.

Fang, L., Yu, H., & Huang, Y. (2018). The role of investor sentiment in the long-term correlation between U . S . stock and bond markets. International Review of Economics and Finance, 58(May 2017), 127–139.

Guldiken, O., Tupper, C., Nair, A., & Yu, H. (2017). The impact of media coverage on IPO stock performance. Journal of Business Research, 72, 24–32.

Guo, K., Sun, Y., & Qian, X. (2017). Can investor sentiment be used to predict the stock price ? Dynamic analysis based on China stock market. Physica A, 469, 390–396.

Hartono, J. (2018). Metoda Pengumpulan dan Teknik Analisis Data. Yogyakarta: Andi.

Huang, T. (2018). The puzzling media effect in the Chinese stock market. Pacific-Basin Finance Journal, 49(April), 129–146.

Kemp, S. (2020). Digital 2020: Global Digital Review.

Lei, L., Li, Y., & Luo, Y. (2015). Social Media and Voluntary Nonfinancial Disclosure: Evidence from Twitter Presence and Corporate Political Disclosure. Journal of International Accounting Research, 90(3), 1395–1435.

Mcgurk, Z., Nowak, A., & Hall, J. C. (2019). Stock returns and investor sentiment : textual analysis and social media. Journal of Economics and Finance.

Naughton, J. P., Wang, C., & Yeung, I. (2019). Investor Sentiment for Corporate Social Performance. The Accounting Review, 94(4), 401–420.

Oehler, A., Walker, T. J., & Wendt, S. (2013). Effects of election results on stock price performance : evidence from 1980 to 2008. Management Finance, 714–735.

Renault, T. (2017). Intraday online investor sentiment and return patterns in the U . S . stock market. Journal of Banking and Finance, 84, 25–40.

Spence, M. (1973). Job Market Signaling. The Quarterly Journal of Economics, 87(3), 355–374.

Sprenger, T. O., Tumasjan, A., Sandner, P. G., & Welpe, I. M. (2014). Tweets and Trades : The Information Content of Stock Microblogs. European Financial Management, 20(5), 926–957.

Sul, H. K., Dennis, A. R., & Yuan, L. I. (2017). Trading on Twitter : Using Social Media Sentiment to Predict Stock Returns. A Journal of the Decision Sciences Institute, 48(3), 454–489.

Syahnur, M. H., Bijaksana, M. A., & Mubarok, M. S. (2016). Kategorisasi Topik Tweet di Kota Jakarta , Bandung , dan Makassar dengan Metode Multinomial Naïve Bayes Classifier Tweet Topic Categorization in Jakarta , Bandung , and Makassar with Multinomial Naïve Bayes Classifier. E-Proceeding of Engineering, 3(2), 3612–3620.

Torkzadeh, G., & Dhillon, G. (2002). Measuring Factors that Influence the Success of Internet Commerce. JSTOR: Information System Research, 13(2), 187–204.

Wu, C., & Lin, C. (2017). The impact of media coverage on investor trading behavior and stock returns. Pacific Basin Finance Journal, 43(February), 151–172.

Yang, W., Lin, D., & Yi, Z. (2017). Impacts of the mass media effect on investor sentiment. Finance Research Letters, 22, 1–4.

Yu, T., & Huarng, K. (2019). A new event study method to forecast stock returns : The case of Facebook. Journal of Business Research, (June), 0–1.

Yu, Y., Duan, W., & Cao, Q. (2013). The impact of social and conventional media on firm equity value : A sentiment analysis approach. Decision Support Systems, 55, 919–926.

Zhang, Y., Song, W., Shen, D., & Zhang, W. (2016). Market reaction to internet news : Information diffusion and price pressure. Economic Modeling, 56, 43–49.




How to Cite

Syahnur, K. N. F., Surianto, D. F., & Muhammad Try Dharsana. (2023). Analysis Of Retail Sector Market Reaction In Indonesia On Social Media And Investor Sentiment. Jurnal Manajemen Bisnis, 10(2), 371–383.